240 research outputs found

    Nano-imaging of environmental dust in human lung tissue by soft and hard X-ray fluorescence microscopy

    Get PDF
    It is well recognized that a large number of pulmonary diseases are induced by the effects of inhaled particulates. Anthracosis is defined as an asymptomatic, mild form of pneumoconiosis caused by the accumulation of \u201cblack carbon\u201d in the lungs due to repeated exposure to air pollution or inhalation of smoke or coal dust particles. Since the human population is progressively exposed to an increasing number and doses of anthropogenic micro and nano particles/compounds, there is a pressing urgency to explore toxicological impact arising from these exposures and the molecular mechanisms driving the body defense or possible related diseases. The toxicity mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of synchrotron radiation-based (SR-based) nano X-ray fluorescence (XRF) imaging and soft X-ray microscopy was used to chemically characterize environmental particulates (anthracosis) in lung tissues from urban subjects with the aim of better understanding the complex nature of related lungs' deposits. High-resolution XRF analyses performed at ESRF and Elettra synchrotrons allowed discriminating single particles in the heterogeneous aggregates found in the lung tissue. The small particles have variable composition resulting from the different combinations of Ti with O, K and Si, Al and Si, or Zn and Fe with O. Interestingly, simultaneous absorption and phase contrast images showed the particulate morphology and allowed to predict the presence of very dense nanoparticles or high concentration of heavy elements

    Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy

    Get PDF
    Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems

    Addressable graphene encapsulation of wet specimens on a chip for optical, electron, infrared and X-ray based spectromicroscopy studies

    Get PDF
    Label-free spectromicroscopy methods offer the capability to examine complex cellular phenomena. Electron and X-ray based spectromicroscopy methods, though powerful, have been hard to implement with hydrated objects due to the vacuum incompatibility of the samples and due to the parasitic signals from (or drastic attenuation by) the liquid matrix surrounding the biological object of interest. Similarly, for many techniques that operate at ambient pressure, such as Fourier transform infrared spectromicroscopy (FTIRM), the aqueous environment imposes severe limitations due to the strong absorption of liquid water in the infrared regime. Here we propose a microfabricated multi-compartmental and reusable hydrated sample platform suitable for use with several analytical techniques, which employs the conformal encapsulation of biological specimens by a few layers of atomically thin graphene. Such an electron, X-ray, and infrared transparent, molecularly impermeable and mechanically robust enclosure preserves the hydrated environment around the object for a sufficient time to allow in situ examination of hydrated bio-objects with techniques operating under both ambient and high vacuum conditions. An additional hydration source, provided by hydrogel pads lithographically patterned in the liquid state near/around the specimen and co-encapsulated, has been added to further extend the hydration lifetime. Note that the in-liquid lithographic electron beam-induced gelation procedure allows for addressable capture and immobilization of the biological cells from the solution. Scanning electron microscopy and optical fluorescence microscopy, as well as synchrotron radiation based FTIR and X-ray fluorescence microscopy, have been used to test the applicability of the platform and for its validation with yeast, A549 human carcinoma lung cells and micropatterned gels as biological object phantoms

    Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    Get PDF
    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal

    Soft X-ray induced radiation damage in thin freeze-dried brain samples studied by FTIR microscopy

    Get PDF
    In order to push the spatial resolution limits to the nanoscale, synchrotron-based soft X-ray microscopy (XRM) experiments require higher radiation doses to be delivered to materials. Nevertheless, the associated radiation damage impacts on the integrity of delicate biological samples. Herein, the extent of soft X-ray radiation damage in popular thin freeze-dried brain tissue samples mounted onto Si3N4 membranes, as highlighted by Fourier transform infrared microscopy (FTIR), is reported. The freeze-dried tissue samples were found to be affected by general degradation of the vibrational architecture, though these effects were weaker than those observed in paraffin-embedded and hydrated systems reported in the literature. In addition, weak, reversible and specific features of the tissue–Si3N4 interaction could be identified for the first time upon routine soft X-ray exposures, further highlighting the complex interplay between the biological sample, its preparation protocol and X-ray probe

    X-ray ptychography using randomized zone plates

    Get PDF
    We have developed a randomized grating condenser zone plate (GCZP) that provides a µm-scale probe for use in x-ray ptychography. This delivers a significantly better x-ray throughput than probes defined by pinhole apertures, while providing a clearly-defined level of phase diversity to the illumination on the sample, and helping to reduce the dynamic range of the detected signal by spreading the zero-order light over an extended area of the detector. The first use of this novel x-ray optical element has been demonstrated successfully for both amplitude and phase contrast imaging using soft x-rays on the TwinMic beamline at the Elettra synchrotron

    A new methodological approach to correlate protective and microscopic properties by soft x-ray microscopy and solid state nmr spectroscopy: The case of cusa’s stone

    Get PDF
    Hydrophobic treatment is one of the most important interventions usually carried out for the conservation of stone artefacts and monuments. The study here reported aims to answer a general question about how two polymers confer different protective performance. Two fluorinated-based polymer formulates applied on samples of Cusa’s stone confer a different level of water repellence and water vapour permeability. The observed protection action is here explained on the basis of chemico-physical interactions. The distribution of the polymer in the pore network was investigated using scanning electron microscopy and X-ray microscopy. The interactions between the stone substrate and the protective agents were investigated by means of solid state NMR spectroscopy. The ss-NMR findings reveal no significant changes in the chemical neighbourhood of the observed nuclei of each protective agent when applied onto the stone surface and provide information on the changes in the organization and dynamics of the studied systems, as well as on the mobility of polymer chains. This allowed us to explain the different macroscopic behaviours provided by each protective agent to the stone substrate

    Assessment and imaging of intracellular magnesium in saos-2 osteosarcoma cells and its role in proliferation

    Get PDF
    Magnesium is an essential nutrient involved in many important processes in living organ-isms, including protein synthesis, cellular energy production and storage, cell growth and nucleic acid synthesis. In this study, we analysed the effect of magnesium deficiency on the proliferation of SaOS-2 osteosarcoma cells. When quiescent magnesium-starved cells were induced to proliferate by serum addition, the magnesium content was 2–3 times lower in cells maintained in a medium without magnesium compared with cells growing in the presence of the ion. Magnesium depletion inhibited cell cycle progression and caused the inhibition of cell proliferation, which was associated with mTOR hypophosphorylation at Serine 2448. In order to map the intracellular magnesium distribution, an analytical approach using synchrotron-based X-ray techniques was applied. When cell growth was stimulated, magnesium was mainly localized near the plasma membrane in cells maintained in a medium without magnesium. In non-proliferating cells growing in the presence of the ion, high concentration areas inside the cell were observed. These results support the role of magnesium in the control of cell proliferation, suggesting that mTOR may represent an important target for the antiproliferative effect of magnesium. Selective control of magnesium availability could be a useful strategy for inhibiting osteosarcoma cell growth

    Methylphenidate Analogues as a New Class of Potential Disease-Modifying Agents for Parkinson’s Disease: Evidence from Cell Models and Alpha-Synuclein Transgenic Mice

    Get PDF
    Parkinson’s disease (PD) is characterized by dopaminergic nigrostriatal neurons degeneration and Lewy body pathology, mainly composed of α-synuclein (αSyn) fibrillary aggregates. We recently described that the neuronal phosphoprotein Synapsin III (Syn III) participates in αSyn pathology in PD brains and is a permissive factor for αSyn aggregation. Moreover, we reported that the gene silencing of Syn III in a human αSyn transgenic (tg) mouse model of PD at a pathological stage, manifesting marked insoluble αSyn deposits and dopaminergic striatal synaptic dysfunction, could reduce αSyn aggregates, restore synaptic functions and motor activities and exert neuroprotective effects. Interestingly, we also described that the monoamine reuptake inhibitor methylphenidate (MPH) can recover the motor activity of human αSyn tg mice through a dopamine (DA) transporter-independent mechanism, which relies on the re-establishment of the functional interaction between Syn III and α-helical αSyn. These findings support that the pathological αSyn/Syn III interaction may constitute a therapeutic target for PD. Here, we studied MPH and some of its analogues as modulators of the pathological αSyn/Syn III interaction. We identified 4-methyl derivative I-threo as a lead candidate modulating αSyn/Syn III interaction and having the ability to reduce αSyn aggregation in vitro and to restore the motility of αSyn tg mice in vivo more efficiently than MPH. Our results support that MPH derivatives may represent a novel class of αSyn clearing agents for PD therapy

    Analysis of intracellular magnesium and mineral depositions during osteogenic commitment of 3d cultured saos2 cells

    Get PDF
    In this study, we explore the behaviour of intracellular magnesium during bone phenotype modulation in a 3D cell model built to mimic osteogenesis. In addition, we measured the amount of magnesium in the mineral depositions generated during osteogenic induction. A two-fold increase of intracellular magnesium content was found, both at three and seven days from the induction of differentiation. By X-ray microscopy, we characterized the morphology and chemical composition of the mineral depositions secreted by 3D cultured differentiated cells finding a marked co-localization of Mg with P at seven days of differentiation. This is the first experimental evidence on the presence of Mg in the mineral depositions generated during biomineralization, suggesting that Mg incorporation occurs during the bone forming process. In conclusion, this study on the one hand attests to an evident involvement of Mg in the process of cell differentiation, and, on the other hand, indicates that its multifaceted role needs further investigation
    corecore